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4. Model Evaluation

Summary of Recommendations for Model Evaluation

appropriately used to inform a decision.

= Model evaluation addresses the soundness of the science underlying a model, the quality and
quantity of available data, the degree of correspondence with observed conditions, and the
appropriateness of a model for a given application.

= Recommended components of the evaluation process include: (a) credible, objective peer review; (b)
QA project planning and data quality assessment; (c) qualitative and/or quantitative model
corroboration; and (d) sensitivity and uncertainty analyses.

= Quality is an atiribute of models that is meaningful only within the context of a specific. model
application. Determining whether a model serves its intended purpose involves in-depth discussions
between model developers and the users responsibie for applying for the model to a particular
problem. ~ :

= Information gathered during model evaluation allows the decision maker to be better positioned to
formulate decisions and policies that take into account all relevant issues and concerns.

41 Introduction

Models will always be constrained by computational limitations, assumptions and knowledge
gaps. They can best be viewed as tools to help inform decisions rather than as machines fto
generate truth or make decisions. Scientific advances will never make it possible to build a
perfect model that accounts for every aspect of reality or to prove that a given model is correct in
all aspects for a particular regulatory application. These characteristics...suggest that model
evaluation be viewed as an integral and ongoing part of the life cycle of a model, from problem
formulation and model conceptualization to the development and application of a computational
tool.

~  NRC Committee on Models in the Regulatory Decision Process (NRC 2007)

The natural complexity of environmental systems makes it difficult to mathematically describe all relevant
processes, including all the intrinsic mechanisms that govern their behavior. Thus, policy makers often
rely on models as tools to approximate reality when making decisions that affect environmental systems.
The challenge facing model developers and users is determining when a model, despite its uncertainties,
can be appropriately used to inform a decision. Model evaluation is the process used to make this
determination. In this guidance, model evaluation is defined as the process used to generate information
to determine whether a model and its analytical results are of a quality sufficient to serve as the basis for
a decision. Model evaluation is conducted over the life cycle of the project, from development through
application.
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Box 5: Model Evaluation Versus Validation Versus Verification

Model evaluation should not be confused with. model validation. Different. disciplines assign different meanings {o
these terms and they are often confused. For example, Suter (1993) found that: among models used for risk
assessments, misconception often arises in the form of the question “Is the model valid?” and statements such as
“No model should be used unless it has been validated.” Suter further points out that *validated” in this context means

(a) proven to correspond exactly to reality or (b) demonstrated. through experimental tests to make consistently
accurate predictions:

Because every model contains simplifications, predictions derived from a model can never:be completely accurate
and a model can never corréspond exactly to reality. In addition, “validated models” (e.g., those that have been
shown to correspond to field data) do not necessarily generate accurate predictions of reality for multiple applications
(Beck 2002a). Thus; some researchers assert that no model is ever truly “validated”; models can only be invalidated
for a specific application (Oreskes et al. 1994). . Accordingly, this guidance focuses on process and techniques for
model evaluation rather than model validation or invalidation. ‘

“Verification” is another term commonly applied to the evaluation process. However, in-this guidance and elsewhere,
model verification typically refers to model code verification as defined in the model development section. For
example, the NRC Committee on Models in the Regulatory Decision Process (NRC 2007) provides the following
definition:

Verification refers to activities that are designed to confirm that the mathematical framework
embodied in the module is correct and that the computer code for a module is operating according
toits intended design so that the results obtained compare favorably with those obtained using
known analytical solutions or numerical solutions from simulators based on similar or identical
mathematical frameworks.

In simple terms, model evaluation provides information to help answer four main questions (Beck 2002b):

How have the principles of sound science been addressed during model development?

How is the choice of model supported by the quantity and quality of available data?

How closely does the model approximate the real system of interest?

How does the model perform the specified task while meeting the objectives set by QA project
planning?

A~

These four factors address two aspects of model quality. The first factor focuses on the intrinsic
mechanisms and generic properties of a model, regardless of the particular task to which it is applied. In
contrast, the latter three factors are evaluated in the context of the use of a model within a specific set of
conditions. Hence, it follows that model quality is an attribute that is meaningful only within the context of
a specific model application. A model's quality to support a decision becomes known when information is
available to assess these factors.

The NRC committee recommends that evaluation of a regulatory model continue throughout the life of a
model and that an evaluation plan could:

» Describe the model and its intended uses.
= Describe the relationship of the model to data, including the data for both inputs and corroboration.

20



Case 4:05-cv-00329-GKF-PJC  Document 2138-8 Filed in USDC ND/OK on 06/04/2009 Page 4 of 21

» Describe how such data and other sources of information will be used to assess the ability of the
model to meet its intended task.

» Describe all the elements of the evaluation plan by using an outline or diagram that shows how the
elements relate to the model’s life cycle.

» Describe the factors or events that might trigger the need for major model revisions or the
circumstances that might prompt users to seek an alternative model. These can be fairly broad and
qualitative.

= |dentify the responsibilities, accountabilities, and resources needed to ensure implementation of the
evaluation plan.

As stated above, the goal of model evaluation is to ensure model quality. At EPA, quality is defined by the
information Quality Guidelines (IQGs) (EPA 2002a). The IQGs apply to all information that EPA
disseminates, including models, information from models, and input data (see Appendix C, Box C4:
Definition of Quality). According to the IQGs, quality has three major components: integrity, utility, and
objectivity. This chapter focuses on addressing the four questions listed above by evaluating the third
component, objectivity — specifically, how to ensure the objectivity of information from models by
considering their accuracy, bias, and reliability.

»  Accuracy, as described in Section 2.4, is the closeness of a measured or computed value to its “true”
value, where the “true” value is obtained with perfect information.

» Bias describes any systematic deviation between a measured (i.e., observed) or computed value and
its “true” value. Bias is affected by faulty instrument calibration and other measurement errors,
systematic errors during data collection, and sampling errors such as incomplete spatial
randomization during the design of sampling programs.

= Reliability is the confidence that (potential) users have in a model and its outputs such that they are
willing to use the model and accept its results (Sargent 2000). Specifically, reliability is a function of
the model’s performance record and its conformance to best available, practicable science.

This chapter describes principles, tools, and considerations for model evaluation throughout all stages of
development and application. Section 4.2 presents a variety of qualitative and quantitative best practices
for evaluating models. Section 4.3 discusses special considerations for evaluating proprietary models.
Section 4.4 explains why retrospective analysis of models, conducted after a model has been applied,
can be important to improve individual models and regulatory policies and to systematically enhance the
overall modeling field. Finally, Section 4.5 describes how the evaluation process culminates in a decision
whether to apply the model to decision making. Section 4.6 reviews the key recommendations from this
chapter.

4.2 Best Practices for Model Evaluation

The four questions listed above address the soundness of the science underlying a model, the quality and
quantity of available data, the degree of correspondence with observed conditions, and the
appropriateness of a model for a given application. This guidance describes several “tools” or best
practices to address these questions: peer review of models; QA project planning, including data quality
assessment; model corroboration (qualitative and/or quantitative evaluation of a model’'s accuracy and
predictive capabilities); and sensitivity and uncertainty analysis. These tools and practices include both
qualitative and gquantitative techniques:
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=  Qualitative assessments: Some of the uncertainty in model predictions may arise from sources
whose uncertainty cannot be quantified. Examples are uncertainties about the theory underlying the
model, the manner in which that theory is mathematically expressed to represent the environmental
components, and the theory being modeled. Subjective evaluation of experts may be needed to
determine appropriate values for model parameters and inputs that cannot be directly observed or
measured (e.g., air emissions estimates). Qualitative assessments are needed for these sources of
uncertainty. These assessments may involve expert elicitation regarding the system’s behavior and
comparison with model forecasts.

*  Quantitative assessments: The uncertainty in some sources — such as some model parameters and
some input data — can be estimated through quantitative assessments involving statistical
uncertainty and sensitivity analyses. These types of analyses can also be used to quantitatively
describe how model estimates of current conditions may be expected to differ from comparable field
observations. However, since mode! predictions are not directly observed, special care is needed
when quantitatively comparing model predictions with field data.

As discussed previously, mode! evaluation is an iterative process. Hence, these tools and techniques
may be effectively applied throughout model development, testing, and application and should not be
interpreted as sequential steps for model evaluation.

Model evaluation should always be conducted using a graded approach that is adequate and appropriate
to the decision at hand (EPA 2001, 2002b). This approach recognizes that model evaluation can be
modified to the circumstances of the problem at hand and that programmatic requirements are varied.
For example, a screening model (a type of model designed to provide a “conservative” or risk-averse
answer) that is used for risk management should undergo rigorous evaluation to avoid false negatives,
while still not imposing unreascnable data-generation burdens (false positives) on the regulated
community. ldeally, decision makers and modeling staff work together at the onset of new projects to
identify the appropriate degree of model evaluation (see Section 3.1).

External circumstances can affect the rigor required in model evaluation. For example, when the likely
result of modeling will be costly control strategies and associated controversy, more detailed model
evaluation may be necessary. In these cases, many aspects of the modeling may come under close
scrutiny, and the modeler must document the findings of the model evaluation process and be prepared
to answer guestions that will arise about the model. A deeper level of model evaluation may also be
appropriate when modeling unique or extreme situations that have not been previously encountered.

Finally, as noted earlier, some assessments require the use of multiple, linked models. This linkage has
implications for assessing uncertainty and applying the system of models. Each component model as well
as the full system of integrated models must be evaluated.

Sections 4.2.1 and 4.2.2, on peer review of models and quality assurance protocols for input data,
respectively, are drawn from existing guidance. Section 4.2.3, on mode! corroboration activities and the
use of sensitivity and uncertainty analysis, provides new guidance for model evaluation (along with
Appendix D).
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Box 6: Examples of Life Cycle Model Evaluation

The value in evaluating a model from the conceptual stage through the use stage is illustrated in a multi-year project
conducted by the Organization for Economic Cooperation and Development (OECD). The project sought to develop a
screening model that could be used to assess the persistence and long-range transport potential of chemicals. To
ensure its effectiveness, the screening model needed to be a consensus model that had been evaluated against a
broad set of available models and data.

This project began at a 2001 workshop to: set model performance and evaluation goals: that would provide the
foundation for subsequent modei selection and development (OECD 2002). OECD then established an expert group
in 2002. This group began its work by developing and publishing a guidance document on using multimedia models
to estimate environmental persistence and long-range transport. From 2003 to 2004, the group: compared and
assessed the performance of nine available multimedia fate and transport models (Fenner et al. 2005; Klasmeier et
al. - 2006). The group then developed a parsimonious consensus model representing the minimum. sel of key
components identified in the model comparison. They convened three international workshops fo disseminate this
consensus model and provide an ongoing model evaluation forum (Scheringer et al. 2008).

In this example, more than half the total effort was invested in the conceptual and model formulation stages, and
much of the effort focused on performance evaluation. The group recognized that each model’s life cycle is different,
but noted that attention should be given to developing consensus-based approaches in the model concept and
formulation stages. Conducting concurrent evaluations at these stages in this setting resulted in a high-degree of buy-
in from the various modeling groups.

4.21 Scientific Peer Review

Peer review provides the main mechanism for independent evaluation and review of environmental
models used by the Agency. Peer review provides an independent, expert review of the evaluation in
Section 4.1; therefore, its purpose is two-fold:

= To evaluate whether the assumptions, methods, and conclusions derived from environmental models
are based on sound scientific principles.

» To check the scientific appropriateness of a model for informing a specific regulatory decision. (The
latter objective is particularly important for secondary applications of existing models.)

Information from peer reviews is also helpful for choosing among multiple competing models for a specific
regulatory application. Finally, peer review is useful to identify the limitations of existing models. Peer
review is not a mechanism to comment on the regulatory decisions or policies that are informed by
models (EPA 2000c).

Peer review charge questions and corresponding records for peer reviewers to answer those questions
should be incorporated into the quality assurance project plan, developed during assessment planning
(see Section 4.2.2, below). For example, peer reviews may focus on whether a model meets the
objectives or specifications that were set as part of the quality assurance plan (see EPA 2002b) (see
Section 3.1).
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All models that inform signiﬁcant‘? regulatory decisions are candidates for peer review (EPA 2000c, 1993)
for several reasons:

= Model results will be used as a basis for major regulatory or policy/guidance decision making.
*= These decisions likely involve significant investment of Agency resources.
= These decisions may have inter-Agency or cross-agency implications/applicability.

Existing guidance recommends that a new model should be scientifically peer-reviewed prior to its first
application; for subsequent applications, the program manager should consider the scientific/technical
complexity and/or the novelty of the particular circumstances to determine whether additional peer review
is needed (EPA 1993). To conserve resources, peer review of “similar” applications should be avoided.

Models used for secondary applications (existing EPA models or proprietary models) will generally
undergo a different type of evaluation than those developed with a specific regulatory information need in
mind. Specifically, these reviews may deal more with uncertainty about the appropriate application of a
model to a specific set of conditions than with the science underlying the model framework. For example,
a project team decides to assess a water quality problem using WASP, a well-established water quality
model framework. The project team determines that peer review of the model framework itself is not
necessary, and the team instead conducts a peer review on their specific application of the WASP
framework.

The following aspects of a model should be peer-reviewed to establish scientific credibility (SAB 1993a,
EPA 1993):

« Appropriateness of input data.

= Appropriateness of boundary condition specifications.

» Documentation of inputs and assumptions.

= Applicability and appropriateness of selected parameter values.

= Documentation and justification for adjusting model inputs to improve model performance
(calibration).

*= Modetl application with respect to the range of its validity.

» Supporting empirical data that strengthen or contradict the conclusions that are based on model
resuits.

To be most effective and maximize its value, external peer review should begin as early in the model
development phase as possible (EPA 2000b). Because peer review involves significant time and
resources, these allocations must be incorporated into components of the project planning and any

2 Executive Order 12866 (58 FR 51735) requires federal agencies to determine whether a regulatory action is
“significant” and therefore, subject to the requirements of the Executive Order, including review by the Office of
Management and Budget. The Order defines “significant regulatory action” as one “that is likely to result in a rule
that may: (1) Have an annual effect on the economy of $100 million or more or adversely affect in a material way
the economy, a sector of the economy, productivity, competition, jobs, the environment, public health or safety, or
State, local, or tribal governments or communities; (2) Create a serious inconsistency or otherwise interfere with an
action taken or planned by another agency; (3) Materially alter the budgetary impacts of entitlements, grants, user
fees, or loan programs or the rights and obligations of recipients thereof; or (4) Raise novel legal or policy issues
arising out of legal mandates, the President’s priorities, or the principles set forth in [the] Order.” Section 2(f).
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related contracts. Peer review in the early stages of model development can help evaluate the
conceptual basis of models and potentially save time by redirecting misguided initiatives, identifying
alternative approaches, or providing strong technical support for a potentially controversial position (SAB
1993a, EPA 1993). Peer review in the later stages of model development is useful as an independent
external review of model code (i.e., model verification). External peer review of the applicability of a
model to a particular set of conditions should be considered well in advance of any decision making, as it
helps avoid inappropriate applications of a model for specific regulatory purposes (EPA 1993).

The peer review logistics are left to the discretion of the managers responsible for applying the model
results to decision making. Mechanisms for accomplishing external peer review include (but are not
limited to):

= Using an ad hoc panel of scientists.’
= Using an established external peer review mechanism such as the SAB
* Holding a technical workshop.*

Several sources provide guidance for determining the qualifications and number of reviewers needed for
a given modeling project (SAB 1993a; EPA 2000c, 1993, 1994a). Key aspects are summarized in
Appendix D of this guidance.

4.2.2 Quality Assurance Project Planning and Data Quality Assessment

Like peer review, data quality assessment addresses whether a model has been developed according to
the principles of sound science. While some variability in data is unavoidable (see Section 4.2.3.1),
adhering to the tenets of data quality assessment described in other Agency guidance® (Appendix D, Box
D2: Quality Assurance Planning and Data Acceptance Criteria) helps minimize data uncertainty.

Well-executed QA project planning also helps ensure that a model performs the specified task, which
addresses the fourth model evaluation question posed in Section 4.1. As discussed above, evaluating
the degree to which a modeling project has met QA objectives is often a function of the external peer
review process. The Guidance for Quality Assurance Project Plans for Modeling (EPA 2002b) provides
general information about how to document quality assurance planning for modeling (e.g., specifications

* The formation and use of an ad hoc panel of peer reviewers may be subject to the Federal Advisory Committee Act
(FACA). Compliance with FACA’s requirements is summarized in Chapter Two of the Peer Review Handbook,
“Planning a Peer Review” (EPA 2000c). Guidance on compliance with FACA may be sought from the Office of
Cooperative Environmental Management. Legal questions regarding FACA may be addressed to the Cross-Cutting
Issues Law Office in the Office of General Counsel.
# Note that a technical workshop held for peer review purposes is not subject to FACA if the reviewers provide
individual opinions. [Note that there is no “one time meeting” exemption from FACA. The courts have held that
even a single meeting can be subject to FACA.] An attempt to obtain group advice, whether it be consensus or
majority-minority views, likely would trigger FACA requirements.
3 Other guidance that can help ensure the quality of data used in modeling projects includes:
e Guidance for the Data Quality Objectives Process, a systematic planning process for environmental data
collection (EPA 2000a).
e Guidance on Choosing a Sampling Design for Environmental Data Collection, on applying statistical
sampling designs to environmental applications (EPA 2002c¢).
e Guidance for Data Quality Assessment: Practical Methods for Data Analysis, to evaluate the extent to
which data can be used for a specific purpose (EPA 2000b).
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or assessment criteria development, assessments of various stages of the modeling process; reports to
management as feedback for corrective action; and finally the process for acceptance, rejection, or
qualification of the output for use) to conform with EPA policy and acquisition regulations. Data quality
assessments are a key component of the QA plan for models.

Both the quality and quantity (representativeness) of supporting data used to parameterize and (when
available) corroborate models should be assessed during all relevant stages of a modeling project. Such
assessments are needed to evaluate whether the available data are sufficient to support the choice of the
mode! to be applied (question 2, Section 4.1), and to ensure that the data are sufficiently representative of
the true system being modeled to provide meaningful comparison to observational data (question 3,
Section 4.1).

4.2.3 Corroboration, Sensitivity Analysis, and Uncertainty Analysis

The question “How closely does the model approximate the real system of interest?” is unlikely to have a
simple answer. In general, answering this question is not simply a matter of comparing model results and
empirical data. As noted in Section 3.1, when developing and using an environmental model, modelers
and decision makers should consider what degree of uncertainty is acceptable within the context of a
specific model application. To do this, they will need to understand the uncertainties underlying the
model. This section discusses three approaches to gaining this understanding:

= Model corroboration (Section 4.2.3.2), which includes all quantitative and qualitative methods for
evaluating the degree to which a mode! corresponds to reality.

= Sensitivity analysis (Section 4.2.3.3), which involves studying how changes in a model’s input values
or assumptions affect its output or response.

= Uncertainty analysis (Section 4.2.3.3), which investigates how a mode! might be affected by the lack
of knowledge about a certain population or the real value of model parameters.

Where practical, the recommended analyses should be conducted and their results reported in the
documentation supporting the model. Section 4.2.3.1 describes and defines the various types of
uncertainty, and associated concepts, inherent in the modeling process that model corroboration and
sensitivity and uncertainty analysis can help assess.

4.2.3.1 Types of Uncertainty

Uncertainties are inherent in all aspects of the modeling process. ldentifying those uncertainties that
significantly influence model outcomes (either qualitatively or quantitatively) and communicating their
importance is key to successfully integrating information from models into the decision making process.
As defined in Chapter 3, uncertainty is the term used in this guidance to describe incomplete knowledge
about specific factors, parameters (inputs), or models. For organizational simplicity, uncertainties that
affect model quality are categorized in this guidance as:

= Model framework uncertainty, resulting from incomplete knowledge about factors that control the

behavior of the system being modeled; limitations in spatial or temporal resolution; and simplifications
of the system.
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* Model input uncertainty, resulting from data measurement errors, inconsistencies between
measured values and those used by the model (e.g., in their level of aggregation/averaging), and
parameter value uncertainty.

» Model niche uncertainty, resulting from the use of a model outside the system for which it was
originally developed and/or developing a larger model from several existing models with different
spatial or temporal scales.

Box 7: Example of Model Input Uncertainty

The NRC's Models in Environmental Regalaiory Decision Making provides a detailed example, summarized below, of
the effect of model input uncertainty on policy decisions.

The formation of ozone in the lower atmosphere (troposphere) is an exceedingly complex chemical process that
involves: the interaction of oxides of nitrogen (NO,), volatile organic. compounds (VOCs), sunlight, and dynamic
atmospheric processes. The basic chemistry of ozone formation was known in'the early 1960s (Leighton 1961).
Reduction of ozone concentrations generally requires controlling either or both NO, and VOC emissions. Due fo the
nonlinearity of atmospheric chemistry, selection of the emission-control strategy traditionally relied on air quality
models.

One of the first attempts to include the complexity of atmospheric ozone chemistry.in the decision making process
was a simple ‘observation-based model, the so-called Appendix J curve (36 Fed. Reg. 8166 [1971]). The curve was
used 1o indicate the percentage VOC emission reduction required to altain the ozone standard in an urban area
based on peak concentration of photochemical oxidants observed in that area. Reliable NO, data were virtually
nonexistent at the time; Appendix J was based on data from measurements of ozone and VOC concentrations from
six U.S. cities.  The Appendix J curve was based on the hypothesis that reducing VOC emissions was the most
effective emission-control path, and this conceptual model helped define legislative mandates enacted by Congress
that emphasized controlling these emissions.

The choice in the 1970s to concentrate on VOC confrols was supported by early results from models.  Though new
results. in the 1980s showed higher-than-expected biogenic. VOC emissions, EPA continued to emphasize VOC
controls, in part because the schedule that Congress and EPA set for atfaining the ozone ambient air quality
standards was not conducive 1o reflecting on the basic elements of the science (Dennis 2002).

VOC reductions from the early 1970s to the early 1990s had little effect on ozone concentrations. . Regional ozone
models developed in the 1980s and 1990s suggested that controlling NO, emissions was necessary in addition to; or
instead of, controlling VOCs to reduce ozone concentrations (NRC 1991). The shift in the 1990s toward regulatory
activities: focusing on NOy controls was partly due to the realization that historical estimates of emissions and the
effectiveness of various control strategies in- reducing emissions ‘were not accurate. . In other words, ozone
concentrations-had not been reduced as much as hoped over the past three decades, in part because emissions of
some poliutants were much higher than originally estimated.

Regulations may go forward before science and models are perfected because of the desire to mitigate the potential
harm from environmental hazards. In the case of ozone modeling, the model inputs (emissions inventories in this
case) are often more important than the model science (description of atmospheric transport and chemistry in this
case) and require as careful an evaluation as the evaluation of the model. ' These factors point to the potential
synergistic role that measurements play in model development and application.

In reality, all three categories are interrelated. Uncertainty in the underlying model structure or model
framework uncertainty is the result of incomplete scientific data or lack of knowledge about the factors
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that control the behavior of the system being modeled. Model framework uncertainty can also be the
result of simplifications needed to translate the conceptual model into mathematical terms as described in
Section 3.3. In the scientific literature, this type of uncertainty is also referred to as structural error (Beck
1987), conceptual errors (Konikow and Bredehoeft 1992}, uncertainties in the conceptual model (Usunoff
et al. 1992), or model error/uncertainty (EPA 1997; Luis and MclLaughlin 1992). Structural error relates to
the mathematical construction of the algorithms that make up a model, while the conceptual model refers
to the science underlying a model's governing equations. The terms “model error” and “model
uncertainty” are both generally synonymous with model framework uncertainty.

Many models are developed iteratively to update their underlying science and resolve existing model
framework uncertainty as new information becomes available. Models with long lives may undergo
important changes from version to version. The MOBILE model for estimating atmospheric vehicle
emissions, the CMAQ (Community Multi-scale Air Quality) model, and the QUAL2 water quality models
are examples of models that have had multiple versions and major scientific modifications and extensions
in over two decades of their existence {Scheffe and Morris 1993; Barnwell et al. 2004; EPA 1999c, as
cited in NRC 2007).

When an appropriate model framework has been developed, the model itself may still be highly uncertain
if the input data or database used to construct the application tool is not of sufficient quality. The quality
of empirical data used for both model parameterization and corroboration tests is affected by both
uncertainty and variability. This guidance uses the term “data uncertainty” to refer to the uncertainty
caused by measurement errors, analytical imprecision, and limited sample sizes during data collection
and treatment.

In contrast to data uncertainty, variability results from the inherent randomness of certain parameters,
which in turn results from the heterogeneity and diversity in environmental processes. Examples of
variability include fluctuations in ecological conditions, differences in habitat, and genetic variances
among populations (EPA 1997). Variability in model parameters is largely dependent on the extent to
which input data have been aggregated (both spatially and temporally). Data uncertainty is sometimes
referred to as reducible uncertainty because it can be minimized with further study (EPA 1997).
Accordingly, variability is referred to as irreducible because it can be better characterized and
represented but not reduced with further study (EPA 1997).

A model's application niche is the set of conditions under which use of the model is scientifically
defensible (EPA 1994b). Application niche uncertainty is therefore a function of the appropriateness of a
model for use under a specific set of conditions. Application niche uncertainty is particularly important
when (a) choosing among existing models for an application that lies outside the system for which the
models were originally developed and/or (b) developing a larger model from several existing models with
different spatial or temporal scales {Levins 1992).

The SAB’s review of MMSOILS (Multimedia Contaminant Fate, Transport and Exposure Model) provides
a good example of application niche uncertainty. The SAB questioned the adequacy of using a screening-
level model to characterize situations where there is substantial subsurface heterogeneity or where non-
aqueous phase contaminants are present (conditions differ from default values) (SAB 1993b). The SAB
considered the MMSOILS model acceptable within its original application niche, but unsuitable for more
heterogeneous conditions.
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4.2.32 Model Corroboration

The interdependence of models and measurements is complex and iterative for several reasons.
Measurements help to provide the conceptual basis of a model and inform model development,
including parameter estimation. Measurements are also a critical tool for corroborating model
results. Once developed, models can derive priorities for measurements that ultimately get used
in modifving existing models or in developing new ones. Measurement and model activities are
often conducted in isolation...Although environmental data systems serve a range of purposes,
including compliance assessment, monitoring of trends in indicators, and basic research
performance, the importance of models in the regulatory process requires measurements and
models to be better integrated. Adaptive strategies that rely on iterations of measurements and
modeling, such as those discussed in the 2003 NRC report titled Adaptive Monitoring and
Assessment for the Comprehensive Everglades Restoration Plan, provide examples of how
improved coordination might be achieved.

— NRC Committee on Models in the Regulatory Decision Process (NRC 2007)

Model corroboration includes all quantitative and qualitative methods for evaluating the degree to which a
model corresponds to reality. The rigor of these methods varies depending on the type and purpose of
the model application. Quantitative model corroboration uses statistics to estimate how closely the model
results match measurements made in the real system. Qualitative corroboration activities may include
expert elicitation to obtain beliefs about a system’s behavior in a data-poor situation. These corroboration
activities may move model forecasts toward consensus.

For newly developed model frameworks or untested mathematical processes, formal corroboration
procedures may be appropriate. Formal corroboration may involve formulation of hypothesis tests for
model acceptance, tests on datasets independent of the calibration dataset, and quantitative testing
criteria. In many cases, collecting independent datasets for formal model corroboration is extremely
costly or otherwise unfeasible. In such circumstances, model evaluation may be appropriately conducted
using a combination of other evaluation tools discussed in this section.

Robustness is the capacity of a model to perform equally well across the full range of environmental
conditions for which it was designed (Reckhow 1994; Borsuk et al. 2002). The degree of similarity among
datasets available for calibration and corroboration provides insight into a model's robustness. For
example, if the dataset used to corroborate a model is identical or statistically similar to the dataset used
to calibrate the model, then the corroboration exercise has provided neither an independent measure of
the model's performance nor insight into the model's robustness. Conversely, when corroboration data
are significantly different from calibration data, the corroboration exercise provides a measure of both
model performance and robustness.

Quantitative model corroboration methods are recommended for choosing among multiple models that
are available for the same application. In such cases, models may be ranked on the basis of their
statistical performance in comparison to the observational data (e.g., EPA 1992). EPA’s Office of Air and
Radiation evaluates models in this manner. When a single model is found to perform better than others in
a given category, OAR recommends it in the Guidelines on Air Quality Models as a preferred model for
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application in that category (EPA 2003a). If models perform similarly, then the preferred model is selected
based on other factors, such as past use, public familiarity, cost or resource requirements, and
availability.

Box 8: Example: Comparing Results from Models of Varying Complexity
(From Box 5-4 in NRC's Models in Environmental Regulatory Decision Making)

The Clean Air Mercury Rule® requires industry to reduce mercury emissions from coal-fired power plants. A potential
benefit is the reduced human exposure and related health impacts from methylmercury that may result from reduced
concentrations of this toxin in fish. Many challenges and uncertainties affect assessment of this benefit. In its
assessment of the benefits and costs of this rule, EPA used multiple models to examine how changes in atmospheric
deposition would affect mercury concentrations in fish; and applied the models to assess some of the uncertainties
associated with the model results (EPA 2005).

EPA based its national-scale benefits assessment on results from the mercury maps (MMaps) model. This model
assumes a linear, steady-state relationship between atmospheric deposition of mercury and mercury concentrations
in fish; and thus assumes that a 50% reduction in mercury deposition rates results in a 50% decrease in fish mercury
concentrations. In addition, MMaps assumes instantaneous adjustment of aquatic systems and their ecosystems fo
changes in deposition— that is, no time lag in the conversion of mercury to methyimercury and its bioaccumulation in
fish. MMaps also does not deal with sources of mercury other than those from atmospheric deposition. Despite those
limitations, the Agency concluded that no other available model was capable of performing: a national-scale
assessment.

To further investigate fish mercury concentrations and-to assess the effects of MMaps’ assumptions; EPA applied
more detailed models, including the spreadsheet-based ecological risk assessment for the fate of mercury (SERAFM)
modei, to five well-characterized ecosystems. Unlike the steady-state MMaps model, SERAFM is a dynamic model
which: calculates the temporal response of mercury concentrations. in fish tissues to changes in mercury loading. it
includes multiple land-use types for representing watershed loadings of mercury through soil erosion and runoff.
SERAFM partitions mercury among multiple compartments and phases, including agueous phase, abiotic participles
(for example, silts), and biotic particles (for example, phytoplankton). Comparisons of SERAFM'’s predictions with
observed fish mercury concentrations for a single fish species in four ecosystems showed that the model under-
predicted mean concentrations for one water body, over-predicted mean concentrations for a second water body, and
accurately  predicted mean  concentrations for the other two. The error bars for the observed fish mercury
concentrations in these four ecosystems were large, making it difficult to assess the models’ accuracy: Modeling the
four ecosystems also showed how the assumed physical and chemical characteristics of the specific ecosystem
affected absolute fish- mercury concentrations and the length of time before fish mercury concentrations reached
steady state.

Although EPA concluded that the best ‘available science supports the assumption of a linear relationship between
atmospheric deposition and fish mercury concentrations for broad-scale use, the more detailed ecosystem modeling
demonstrated  that individual ecosystems were highly sensitive to uncertainties in model parameters. The Agency
also noted that many of the model uncertainties could not be guantified. Although the case studies covered the bulk
of the key environmental characteristics, EPA found that extrapolating the individual ecosystem case studies to
account for the variability in ecosystems across the country indicated that those case studies might not represent
extreme conditions that could influence how atmospheric mercury deposition affected fish mercury concentrations in

® On February 8, 2008, the U.S. Court of Appeals for the District of Columbia Circuit vacated the Clean Air
Mercury Rule. The DC Circuit’s vacatur of this rule was unrelated to the modeling conducted in support of the rule.

30



Case 4:05-cv-00329-GKF-PJC  Document 2138-8 Filed in USDC ND/OK on 06/04/2009 Page 14 of 21

a water body.

This example illustrates the usefulness of investigating. a variety of modeis. at varying levels of complexity. A
hierarchical modeling approach, such as that used in the mercury analysis, can provide justification for simplified
model assumptions or potentially provide evidence for a consistent bias that would negate the assumption that a
simple model is appropriate for broad-scale application:

4.2.3.3 Sensitivity and Uncertainty Analysis

Sensitivity analysis is the study of how a model’s response can be apportioned to changes in model
inputs (Saltelli et al. 2000a). Sensitivity analysis is recommended as the principal evaluation tool for
characterizing the most and least important sources of uncertainty in environmental models.

Uncertainty analysis investigates the lack of knowledge about a certain population or the real value of
model parameters. Uncertainty can sometimes be reduced through further study and by collecting
additional data. EPA guidance (e.g., EPA 1997) distinguishes uncertainty analysis from methods used to
account for variability in input data and model parameters. As mentioned earlier, variability in model
parameters and input data can be better characterized through further study but is usually not reducible
(EPA 1997).

Although sensitivity and uncertainty analysis are closely related, sensitivity is algorithm-specific with
respect to model “variables” and uncertainty is parameter-specific. Sensitivity analysis assesses the
“sensitivity” of the model to specific parameters and uncertainty analysis assesses the “uncertainty”
associated with parameter values. Both types of analyses are important to understand the degree of
confidence a user can place in the model results. Recommended techniques for conducting uncertainty
and sensitivity analysis are discussed in Appendix D.

The NRC committee pointed out that uncertainty analysis for regulatory environmental modeling involves
not only analyzing uncertainty, but also communicating the uncertainties to policy makers. To facilitate
communication of model uncertainty, the committee recommends using hybrid approaches in which
unknown quantities are treated probabilistically and explored in scenario-assessment mode by decision
makers through a range of plausible values. The committee further acknowledges (NRC 2007) that:

Effective uncertainty communication requires a high level of interaction with the relevant decision
makers to ensure that they have the necessary information about the nature and sources of
uncertainty and their consequences. Thus, performing uncertainty analysis for environmental
regulatory activities requires extensive discussion between analysts and decision makers.

4.3 Evaluating Proprietary Models

This guidance defines proprietary models as those computer models for which the source code is not
universally shared. To promote the transparency with which decisions are made, EPA prefers using non-
proprietary models when available. However, the Agency acknowledges there will be times when the use
of proprietary models provides the most reliable and best-accepted characterization of a system.
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D.4.4.4 Summary of Performance

As an example of overall summary of performance, we will discuss a procedure constructed using the
scheme introduced by Cox and Tikvart (1990) as a template. The design for statistically summarizing
model performance over several regimes is envisioned as a five-step procedure.

1. Form a replicate sample using concurrent sampling of the observed and modeled values for each
regime. Concurrent sampling associates results from all models with each observed value, so that
selection of an observed value automatically selects the corresponding estimates by all models.

2. Compute the average of observed and modeled values for each regime.

3. Compute the normalized mean square error, NMSE, using the computed regime averages, and store
the value of the NMSE computed for this pass of the bootstrap sampling.

4. Repeat steps 1 through 3 for all bootstrap sampling passes (typically of order 500).

5. Implement the procedure described in ASTM D 6589 (ASTM 2000) to detect which model has the
lowest computed NMSE value (call this the “base” model) and which models have NMSE values that
are significantly different from the "base” model.

In the Cox and Tikvart (1990) analysis, the data were sorted into regimes (defined in terms of Pasquill
stability category and low/high wind speed classes), and bootstrap sampling was used to develop
standard error estimates on the comparisons. The performance measure was the robust highest
concentration (computed from the raw observed cumulative frequency distribution), which is a comparison
of the highest concentration values (maxima}, which most models do not contain the physics to simulate.
This procedure can be improved if intensive field data are used and the performance measure is the
NMSE computed from the modeled and observed regime averages of centerline concentration values as
a function of stability along each downwind arc, where each regime is a particular distance downwind for
a defined stability range.

The data demands are much greater for using regime averages than for using individual concentrations.
Procedures that analyze groups (regimes) of data include intensive tracer field studies, with a dense
receptor network, and many experiments. Whereas, Cox and Tikvart (1990) devised their analysis to
make use of very sparse receptor networks having one or more years of sampling results. With dense
receptor networks, attempts can be made to compare average modeled and “observed” centerline
concentration values, but only a few of these experiments have sufficient data to allow stratification of the
data into regimes for analysis. With sparse receptor networks, there are more data for analysis, but there
is insufficient information to define the observed maxima relative to the dispersing plume’s center of
mass. Thus, there is uncertainty as to whether or not the observed maxima are representative of
centerline concentration values. It is not obvious that the average of the n (say 25) observed maximum
hourly concentration values (for a particular distance downwind and narrowly defined stability range) is
the ensemble average centerline concentration the model is predicting. In fact, one might anticipate that
the average of the n maximum concentration values is likely to be higher than the ensemble average of
the centerline concentration. Thus the testing procedure outlined by Cox and Tikvart (1990) may favor
selection of poorly formed models that routinely underestimate the lateral diffusion (and thereby
overestimate the plume centerline concentration). This in turn, may bias such models’ ability to
characterize concentration patterns for longer averaging times.

It is therefore concluded that once a set of “best-performing models” has been selected from an
evaluation using intensive field data that tests a model’s ability to predict the average characteristics to be
seen in the observed concentration patterns, evaluations using sparse networks are seen as useful
extensions to further explore the performance of well-formulated models for other environs and purposes.

D.5 Sensitivity Analysis

This section provides a broad overview of uncertainty and sensitivity analyses and introduces various
methods used to conduct the latter. A table at the end of this section summarizes these methods’ primary
features and citations to additional resources for computational detail.
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D.5.1 Introducing Sensitivity Analyses and Uncertainty Analysis

A model approximates reality in the face of scientific uncertainties. Section 4.1.3.1 identifies and defines
various sources of model uncertainty. External peer reviewers of EPA models have consistently
recommended that EPA communicate this uncertainty through uncertainty analysis and sensitivity
analysis, two related disciplines. Uncertainty analysis investigates the effects of lack of knowledge or
potential errors of model inputs (e.g., the “uncertainty” associated with parameter values); when
combined with sensitivity analysis, it allows a model user to be more informed about the confidence that
can be placed in model results. Sensitivity analysis measures the effect of changes in input values or
assumptions (including boundaries and model functional form) on the outputs (Morgan and Henrion
1990); it is the study of how uncertainty in a model output can be systematically apportioned to different
sources of uncertainty in the model input (Beck et al. 1994). By investigating the “relative sensitivity” of
model parameters, a user can become knowledgeable of the relative importance of parameters in the
model.

Consider a model represented as a function f, with inputs x; and x,, and with output y, such that y =
f(x1,x2). Figure D.5.1 schematically depicts how uncertainty analysis and sensitivity analysis would be
conducted for this model. Uncertainty analysis would be conducted by determining how y responds to
variation in inputs x; and x;, the graphic depiction of which is referred to as the model’s response surface.
Sensitivity analysis would be conducted by apportioning the respective contributions of x; and x, to
changes in y. The schematic should not be construed to imply that uncertainty analysis and sensitivity
analysis are sequential events. Rather, they are generally conducted by trial and error, with each type of
analysis informing the other. Indeed, in practice, the distinction between these two related disciplines may
be irrelevant. For purposes of clarity, the remainder of this appendix will refer exclusively to sensitivity
analysis.

e — S

Uncertainty Analysis

\

X5

>y = f(x;,x;) >

X4 Xo

inputs modelrun outputs

Figure D.5.1. Uncertainty and sensitivity analyses. Uncertainty analysis investigates the effects of lack of
knowledge or potential errors of model inputs. Sensitivity analysis evaluates the respective contributions
of inputs x; and x,to output y.

D.5.2 Sensitivity Analysis and Computatlonal Complexity

Choosing the appropriate uncertainty analysis/sensitivity analysis method is often a matter of trading off
between the amount of information one wants from the analyses and the computational difficulties of the
analyses. These computational difficulties are often inversely related to the number of assumptions one is
willing or able to make about the shape of a model's response surface.

Consider once again a model represented as a function f, with inputs x; and x, and with output y, such

that y = f(x,,x,). Sensitivity measures how output changes with respect to an input. This is a
straightforward enough procedure with differential analysis if the analyst:
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Can assume that the model’'s response surface is a hyperplane, as in Figure D.5.2(1);
Accepts that the results apply only to specific points on the response surface and that these points
are monotonic first order, as in Figure D.5.2 (2);'° or

¢ Is unconcerned about interactions among the input variables.

Otherwise, sensitivity analysis may be more appropriately conducted using more intensive computational
methods.

(1) ()

Figure D.5.2. It's hyperplane and simple. (1) A model response surface that is a hyperplane can
simplify sensitivity analysis computations. (2) The same computations can also be used for other
response surfaces, but only as approximations around a single locus.

This guidance suggests that, depending on assumptions underlying the model, the analyst should use
non-intensive sensitivity analysis techniques to initially identify those inputs that generate the most
sensitivity, then apply more intensive methods to this smaller subset of inputs. It may therefore be useful
to categorize the various sensitivity analysis techniques into methods that (a) can be quickly used to
screen for the more important input factors; (b) are based on differential analyses; (c) are based on
sampling; and (d) are based on variance methods.

D.5.3 Screening Tools

D.5.3.1 Tools That Require No Model Runs

Cullen and Frey (1999) suggest that summary statistics measuring input uncertainty can serve as
preliminary screening tools without additional model runs (and if the models are simple and linear),
indicating proportionate contributions to output uncertainty:

e Coefficient of variation. The coefficient of variation is the standard deviation normalized to the mean
{(o/n) in order to reduce the possibility that inputs that take on large values are given undue
importance.

e Gaussian approximation. Another approach to apportioning input variance is Gaussian
approximation. Using this method, the variance of a model's output is estimated as the sum of the
variances of the inputs (for additive models) or the sum of the variances of the log-transformed inputs
(for multiplicative models), weighted by the squares on any constants which may be multiplied by the
inputs as they occur in the model.

D.5.3.2 Scatterplots
Cullen and Frey (1999) suggest that a high correlation between an input and an output variable may
indicate substantial dependence of the variation in output and the variation of the input. A simple, visual

19 Related to this issue are the terms “local sensitivity analysis” and “global sensitivity analysis.” The former refers
to sensitivity analysis conducted around a nominal point of the response surface, while the latter refers to sensitivity
analysis across the entire surface.
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assessment of the influence of an input on the output is therefore possible using scatterplots, with each
plot posing a selected input against the output, as in Figure D.5.3.
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Figure D.5.3. Correlation as indication of input effect. The high correlation between the input
variable area and the output variable time (holding all other variables fixed) is an indication of
the possible effect of area’s variation on the output.

D.5.3.3 Morris’s OAT

The key concept underlying one-at-a-time (OAT) sensitivity analyses is to choose a base case of input
values and to perturb each input variable by a given percentage away from the base value while holding
all other input variables constant. Most OAT sensitivity analysis methods yield Jocal measures of
sensitivity (see footnote 9) that depend on the choice of base case values. To avoid this bias, Saltelli et
al. (2000b) recommend using Morris’'s OAT for screening purposes because it is a global sensitivity
analysis method — it entails computing a number of local measures (randomly extracted across the input
space) and then taking their average.

Morris’'s OAT provides a measure of the importance of an input factor in generating output variation, and
while it does not quantify interaction effects, it does provide an indication of the presence of interaction.
Figure D.5.4 presents the results that one would expect to obtain from applying Morris’s OAT (Cossarini
et al. 2002). Computational methods for this technique are described in Saitelli et al. 2000b.
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Figure D.5.4. An application of Morris's OAT. Cossarini et al. (2002) investigated the influence
of various ecological factors on energy flow through a food web. Their sensitivity analysis
indicated that maximum bacteria growth and bacteria mortality (jieac and Kmygge, respectively)
have the largest (and opposite) effects on energy flow, as indicated by their values on the
horizontal axis. These effects, as indicated by their values on the vertical axis, resulted from
interactions with other factors.

D.5.4 Methods Based on Differential Analysis

As noted previously, differential analyses may be used to analyze sensitivity if the analyst is willing either
to assume that the model response surface is hyperplanar or to accept that the sensitivity analysis results
are local and that they are based on hyperplanar approxirations tangent to the response surface at the
nominal scenario (Morgan and Henrion 1990; Saltelli et al. 2000b).

Differential analyses entail four steps. First, select base values and ranges for input factors. Second,
using these input base values, develop a Taylor series approximation to the output. Third, estimate
uncertainty in output in terms of its expected value and variance using variance propagation techniques.
Finally, use the Taylor series approximations to estimate the importance of individual input factors (Saltelli
et al. 2000b). Computational methods for this technique are described in Morgan and Henrion 1990.

D.5.5 Methods Based on Sampling

One approach to estimating the impact of input uncertainties is to repeatedly run a model using randomly
sampled values from the input space. The most well-known method using this approach is Monte Carlo
analysis. In a Monte Carlo simulation, a model is run repeatedly. With each run, different input values are
drawn randomly from the probability distribution functions of each input, thereby generating multiple
output values (Morgan and Henrion 1990; Culien and Frey 1999). One can view a Monte Carlo simulation
as a process through which multiple scenarios generate multiple output values; although each execution
of the model run is deterministic, the set of output values may be represented as a cumulative distribution
function and summarized using statistical measures (Cullen and Frey 1999).

EPA proposes several best principles of good practice for the conduct of Monte Carlo simulations (EPA
1997). They include the following:

« Conduct preliminary sensitivity analyses to identify significant model components and input variables
that make important contributions to model uncertainty.

e When deciding upon a probability distribution function (PDF) for input variables, consider the
following questions: Is there any mechanistic basis for choosing a distributional family? Is the PDF
likely to be dictated by physical, biological, or other properties and mechanisms? Is the variable
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discrete or continuous? What are the bounds of the variable? Is the PDF symmetric or skewed, and if
skewed, in which direction?

e Base the PDF on empirical, representative data.

o If expert judgment is used as the basis for the PDF, document explicitly the reasoning underlying this
opinion.

« Discuss the presence or absence of covariance among the input variables, which can significantly
affect the output.

The preceding points merely summarize some of the main points raised in EPA’s Guidance on Monte
Carlo Analysis. That document should be consulted for more detailed guidance. Conducting Monte Carlo
analysis may be problematic for models containing a large number of input variables. Fortunately, there
are several approaches to dealing with this problem:

e Brute force approach. One approach is to increase sheer computing power. For example, EPA’s
ORD is developing a Java-based tool that facilitates Monte Carlo analyses across a cluster of PCs by
harnessing the computing power of multiple workstations to conduct multiple runs for a complex
model (Babendreier and Castleton 2002).

e Smaller, structured trials. The value of Monte Carlo lies not in the randomness of sampling, but in
achieving representative properties of sets of points in the input space. Therefore, rather than
sampling data from entire input space, computations may be through stratified sampling by dividing
the input sample space into strata and sampling from within each stratum. A widely used method for
stratified sampling is Latin hypercube sampling, comprehensively described in Cullen and Frey 1999.

e Response surface model surrogate. The analyst may also choose to conduct Monte Carlo not on the
complex model directly, but rather on a response surface representation of it. The latter is a simplified
representation of the relationship between a selected number of model outputs and a selected
number of mode! inputs, with all other model inputs held at fixed values (Morgan and Henrion 1980;
Saltelli et al. 2000b).

D.5.6 Methods Based on Variance

Consider once again a model represented as a function f, with inputs x; and x; and with output y, such
that y = f(x;,x,). The input variables are affected by uncertainties and may take on any number of possible
values. Let X denote an input vector randomly chosen from among all possible values for x; and x,. The
output y for a given X can also be seen as a realization of a random variable Y. Let E(YIX) denote the
expectation of Y conditional on a fixed value of X. If the total variation in y is matched by the variability in
E(Yl X) as x;is allowed to vary, this is an indication that variation in x; significantly affects y.

The variance-based approaches to sensitivity analysis are based on the estimation of what fraction of
total variation of y is attributable to variability in £ (Yl X) as a subset of input factors are allowed to vary.
Three methods for computing this estimation (correlation ratio, Sobol, and Fourier amplitude sensitivity
test) are featured in Saltelli et al. 2000b.

D.5.7 Which Method to Use?

A panel of experts was recently assembled to review various sensitivity analysis methods. The panel
refrained from explicitly recommending a “best” method and instead developed a list of attributes for
preferred sensitivity analysis methods. The panel recommended that methods should preferably be able
to deal with a model regardless of assumptions about a model’s linearity and additivity, consider
interaction effects among input uncertainties, cope with differences in the scale and shape of input PDFs,
cope with differences in input spatial and temporal dimensions, and evaluate the effect of an input while
all other inputs are allowed to vary as well (Frey 2002; Saltelli 2002). Of the various methods discussed
above, only those based on variance (Section D.5.6) are characterized by these attributes. When one or
more of the criteria are not important, the other tools discussed in this section will provide a reasonable
sensitivity assessment.

As mentioned earlier, choosing the most appropriate sensitivity analysis method will often entail a trade-
off between computational complexity, model assumptions, and the amount of information needed from
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the sensitivity analysis. As an aid to sensitivity analysis method selection, the table below summarizes the
features and caveats of the methods discussed above.

g y Potential for significant error if | Cullen and Frey
methods independent of model model is non-linear 1999, pp. 247-8.
run
Morris’s Global sensitivity Indicates, but does not Saltelli et al.
one-at-a-time | analysis quantify interactions 2000b, p. 68.
Differential Global sensitivity No treatment of interactions Cullen and Frey
analyses analysis for linear model; | among inputs 1999, pp. 186-94.
local sensitivity analysis Saltelli et al.
for nonlinear model Assumes linearity, 2000b, pp. 183-91
monotonicity, and continuity
Monte Carlo | Intuitive Depending on number of Cullen and Frey
analyses input variables, may be time- | 1999, pp. 196-237
No assumptions consuming to run, but
regarding response methods to simplify are Morgan and
surface available Henrion 1990, pp.
198-216.
May rely on assumptions
regarding input PDFs
Variance- Robust and independent | May be computationally Saltelli et al.
based of model assumptions difficult. 2000b, pp. 167-97
Addresses interactions

D.6 Uncertainty Analysis

D.6.1 Model Suitability

An evaluation of model suitability to resolve application niche uncertainty (Section 4.1.3.1) should
precede any evaluation of data uncertainty and model performance. The extent to which a model is
suitable for a proposed application depends on:

Mapping of model attributes to the problem statement

The degree of certainty needed in model outputs

The amount of reliable data available or resources available to collect additional data
Quality of the state of knowledge on which the model is based

Technical competence of those undertaking simulation modeling

Appropriate data should be available before any attempt is made to apply a model. A model that needs
detailed, precise input data should not be used when such data are unavailable.

D.6.2 Data Uncertainty

There are two statistical paradigms that can be adopted to summarize data. The first employs classical
statistics and is useful for capturing the most likely or “average” conditions observed in a given system.
This is known as the “frequentist” approach to summarizing model input data. Frequentist statistics rely
on measures of central tendency (median, mode, mean values) and represent uncertainty as the
deviation from these metrics. A frequentist or “deterministic’ model produces a single set of solutions for
each model run. In contrast, the alternate statistical paradigm employs a probabilistic framework, which
summarizes data according to their “likelihood” of occurrence. Input data are represented as distributions
rather than a single numerical value and models outputs capture a range of possible values.

The classical view of probability defines the probability of an event occurring by the value to which the

long run frequency of an event or quantity converges as the number of trials increases (Morgan and
Henrion 1990). Classical statistics relies on measures of central tendency (mean, median, mode) to
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